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1. Introduction

In a previous report (Schwarz, 1976) the accuracy of
airborne gradiometry has been studied and some conclusions have
been drawn about cptimal point configurations and data combi-
nations. This report supplements some of the previous investi-

1
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gations. Not much can be added with respect to the expected
accuracy. Simulation studies display the behaviour of individual
experiments only and are therefore not suited to check results

of an accuracy study. The interest of a simulation study is there-
fore not so much in the field of accuracy but in the domain of
operational realization and optimal performance.

In order to get an operational program for airborne
gradiometry the most important problem to cope with is the
efficient handling of large amounts of data. The proposed
measuring system will produce about 250 observations per profile
and degree. In order to cover a 20° x 25° area with profiles
spaced at 1° we have to treat 130 000 measurements. For mean
gravity values below 1° x 1° we have to use 20' spacings and '
the above number of measurements will triple. It has been shown
in Schwarz (1976) how the number of observations can be reduced
without significantly impairing the accuracy of the results. For
an operational program, however, it will be necessary to use all
information available. Not so much to increase accuracy but to
make results more reliable. Therefore, we have to incorporate
both viewpoints in such a program. Efficiency asks for data
selection in each computation step. Reliability requires the
processing of all data available.

A second reason to carry out a simulation study is the
treatment of pathological error situations, Accuracy studies are
usually performed under the assumption that the observational
errors follow a Gaussian distribution, With complex measuring
systems on a moving base this assumption may not be realistic.
Besides correlated errors biases are likely to occur in airborne

gradiometry. Effects of this kind are easy to simulate and

-




results are important for the planning of experiments. Thus,
the actual development of the error budget coming from different
sources will help to plan an effective updating procedure.

Finally, the checking of such a program in a controlled
experiment is a worthwile exercise by itself. Not only because
of its complexity but because instabilities stemming from the e
downward continuation problem should be controlled in the best
way possible. Special care must be taken that the methods for
generating the data are truly independent of the data processing

procedures. If this can be achieved simulation studies will give
a reliable base to handle real data. Large differences in the
results from actual and from simulated data will indicate that f
the mathematical model needs refinement, The nature of the re-
finement can often been guessed from the simulation.

The numerical treatment of the problem requires the
consideration of the following four steps:

Step 1 ... Gravity and gradiometry data are generated at ground 3
and at flight level,
Step 2 ... Data at flight level are corrupted by the error
model.
Step 3 ... Gravity anomalies at ground level are estimated from
data at flight level.
Step 4 ... Estimated and model anomalies are compared at ground
level.

These steps will be covered in the next three sections.
Data simulation in section 2, error models in section 3, and
estimation and comparison in section 4. Section 5 will give a
short review of the programs which are listed in an appendix.

2. Mass Models and Their Spectral Properties.

The basic assumption underlying the simulation of
gravimetric quantities by a point mass model can be formulated
in the following way: The field generated by such a model in a
Timited region can be regarded as a sufficient approximation of i
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the anomalous gravity field in this region. In a number of
applications the actual field can only be described by statis-
tical parameters. In such a case the above would imply that the
statistical properties of the simulated field can also be con-
sidered as approximations of the actual quantities. This as-
sumption has important theoretical and practical implications.
Some of them will be examined in the sequel,

Let us first consider the simple case that all anomalous
masses are concentrated on a plane at depth z and that the

1
simulated function is wanted on a parallel plane 1z, . Using

Cartesian coordinates we can write

+%

9(x,y,2,) = [fh{x-x',y-y',z -z )f(x',y',z )dx'dy' (2.1)

- 00

where density function representing the anomalous
masses 5 the upward continuation operator, and g 1is the
simulated gravity function., Since we will use the spectral
density function later on we will call f the mass density
function in the sequel. Obviously, g will be singular at Z.
i.e. it is only defined above this plane, and we have the :
conditon z, > :l

Equation (2.1) defines a double convolution of the

functions n and f which may be written as

(R}

(x5¥52,) = N(X,y,2,-2 )ewf(x,y,2 ) (2.

where » is the convolution symbol. Since we consider only inte-
grations in the (x,y)-plane we will write

g(x,y) = h{x,y)eaf(x,y) , (2.3)

keeping in mind that both g and f refer to a fixed 2z . Let

us assume that the Fourier transforms of all three functions in




equation (2.3) exist. We will denote them by capital letters

and reserve small letters for the data domain. As an example we
have

+x .
G(u,v) = [[g(x,y)e 2 (8x*V¥)qydy . (2.4)
as Fourier transform of g(x,y) a&and the inverse relation

+ ’
g(x,y) = == [[6(u,v)et ¥V duay . (2.5)

&n” ow

G(u,v) 1is also called the spectrum of g(x,y) . Forming all
three transforms we can make use of the simple relations in the
spectral domain

G(u,v) = H(u,v) « F(u,v) (2.6)
and using the inversion formula (2.5) we obtain

+m N ( ryr
L 1w, e IR v et R gy (2.7)

4% -

g(x,y) =

The transfer function H(u,v) 1is determined by the geometrical

relations between the planes z, and z, and is of the form

2 3 ??de—iiu(x-x Yt Uyr=yr )
(usv) = | )= 5 2,42,3/2
sof (X=x'}"#({y=y' ) "+d"}"" "

dx 'dy'

—
ro
o

~

where d =12z, -2,

Evaluating the integral we obtain

-dV¥u"+v”

H(u,v) = 2-e

b
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and we can write formula (2-7) as

+ A
pr =d¥as+v =277
l

)

g(x,y) =al—;:.e (u,v)e® 9% "VY) quqdy (2.10)

-

Equation (2.10) shows that the transfer function is a smoothing
function which affects the high frequencies most. The degree of
the smoothing is dependent on the size of d , i.e. on the
separation of the two planes. To illustrate this point table 2.1
gives smoothing factors for different values of d and different
frquencies. To make the results applicable to the mass model

used later on, a grid of 61 by 61 equidistant mass points has
been chosen. The variable d s expressed in units of the mass
point spacfng. Since H(u,v) has circular symmetry we have used

H(w) = 27e °¥ (2.11)
where w o=V ulev?
/ d
0.5 1.0 1.5 2.0 2.5
1 850 902 W Bo 814 773
5 773 597 462 357 w2l b
10 « 587 « 397 .213 127 .076
15 .462 weLd .099 .045 w02l
20 « 357 127 .045 .016 006
25 216 .0756 -0El .006 002
30 »E43 .045 .010 .002 .000

Table 2.1 Smoothing of gravity anomaly spectrum

[t is apparent from this table that most of the high

frequency information is lost if d becomes larger than the




mass point spacing. This will result in a very smooth gravity
field because its structure is determined by a few low fre-
quencies only.

A similar consideration applies for second-order
derivatives. We will show it for the vertical derivative of g
Using equation (2.10) we obtain &

2z

3g(x,y,z1) g ; +v qu +v2 (u,v) 1(uw+vy)dudv
i 2 (2.12)
Thus
Hz(u,v) = Vu?+v? H(u,v)
or
H (w) = w H(w) . (?.13)

Results are given in table 2,2.

W h
0.5 1.0 1.5 2.0 25
1 .950 .902 .857 .814 773
5 | 3.865 | 2.987 | 2.309 | 1.785 | 1.380
10 | 5.975 | 3,570 | 2.133 | 1.274 761
15 | 6.928 | 3.200 | 1.478 682 (315
20 | 7.140 | 2.549 910 | 325 .116
25 | 6.399 | 1.904 525 | .145 .040
30 | 6.399 | 1.365 291 | .062 013

Tabel 2.2 'Smoothing'of second-order vertical
gradient spectrum

‘ “..m...........ll
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Since the high frequencies of the second-order gradients
are strongly amplified the smoothing effect of H(w) 1is counter-
balanced if d does not become too large. Thus, even with d
twice the mass point spacing we can expect adequate information
on the frequencies up to 15 or 20. There is not enough empirical
information at the moment on the actual variation of the second-

'
h
LA

order gradients to decide whether a field with such freguency
content is too smooth. It is obvious, however, from table 2.2
that by varying the grid density of the mass points and their
depth we can model a wide range of different fields.

So far no assumptions have been made on the mass density
function f(xLy;zl) except that it should possess a Fourier ¢
transform. Thus, we can model e.g. a given gravity anomaly field
in a completely deterministic way by properly distributing point
masses at certain depths, However, if the field to be simulated
can only be characterized by statistical parameters a different
approach must be taken. In such a case we are looking for a mass
distribution which will generate a field with the desired statisti-
cal properties. Obviously, the stochastic characteristics of the
mass density function and the influence of the transfer function
must be taken into account,

Let us consider a two-dimensional wide-sense stationary
process f(x,y) , i.e. a process which has constant mean value

and an autocorrelation r__. which depends only on £ = X, =X,
and n = ¥y<¥s Thus, it is characterized by its first and second
moments

E{f(x,y)} = const.

(e
i
4=

ECF(x+2,y+n) * fx,¥)} = r..(5,n)

EL

where E is the statistical expectation and the overbar denotes
the complex conjugate. In the sequel we will only use processes
with mean values equal to zero. Therefore, no distinction 1is

necessary between the autocorrelation r_.. and the autocovariance




S and we will always use the latter one. The Fourier transform
of Cee 15 given by
g -i(ug+vn)
S.g(u,v) = ficff(i,n)e dg dn (2.15)
where Sf; is called the spectral density. It can be shown that

the spectral density of an arbitrary process is nonnegative

ff-(u,v) > 0.

S
In general, a stationary process f(x,y) does not have a spectral
representation of the form (2.5). Thus, equation (2.15) must be
regarded as the basic spectral relation for a stationary process.
Given a positive function Sff(u,v) or, equivalently, a peositive
definite function cff(g,n) , we can find a stochastic process
having Sff(u,v) as spectral density and cff(s,n) as co-
variance function. If the covariance function does not have a
Fourier transform it can usually be represented by a Fourier-
Stieltjes integral and the inversion of this.-integral is possible
by generalized transform methods. Incident]y,'this is the method
also used for the spectral representation of the process itself.

Let us now consider the convolution (2.3). It would be
quite advantageous to have g(x,y) stationary because this would
allow us to characterize the simulated field by its first two
moments. One condition which secures stationarity of g(x,y) 1is the
following: If the process f(x,y) 1is wide-sense stationary then the
output of the convolution (2.2) will also be stationary. Further-
more, f(x,y) and g(x,y) will be jointly stationary, i.e. the
joint statistics of f(x,y) and g(x,y) will be the same as the
joint statistics of f(x+5,y+n) and g(x+5,y+n) . Thus we have

c. (gyn) = E{f(x+5,y+n)a(x,y)}

l
|
|




Similarly

€ {En) =

Cfg(i,n)*'h(i,n)

Forming the double transforms S (u L, S_ (uls )i,
CoelEsn), € (& in ). cgg(i,n) . we Tobtain from (2. 6)
(2.17)

Seg(usv) = S (u,v) HIG¥)
g~(u gy = ng(u,v) H{u,v)
Sgg(u,v) = Sff(u,v).ﬁH(u,v);2

By use of equation (2.9)
S g(usv) = dne e “:+V23ff(u,v)

(2.18)

(2.19)

Formula (2.19) shows that the spectral density of the simulated

process is related in a simple way to the spectral density of the

mass density function if f(x,y) is stationary. The importance

of this result has already been stressed by Naidu (1968)

and

Grafarend (1970). It is only valid for the planar approximation
wnile for the spherical case a correction term is necessary.

Using the inverse we obtain

1 (T +vun)

“eGWU EVT 8 fueviet RSPV gudy

and for the varijance

(2.20)

i S—
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¢ (0,0) = f?e‘ZdV““*V-s (u,v)dudv . (2.21)

g9 £f

There are simple relations between the spectral densities of

different first and second order gradients which are e.g. derived

in Naidu (1968) and Kubackova (1974). -
In order to select a special model we have now to choose

Al

a specific spectral density or, equivalently, a specific covari-
ance function. A number of different Gaussian models have been
considered by Grafarend (1970). In case of point mass anomalies
a model corresponding to white noise seems to be most adequate.
In two dimensions it is sometimes called an incoherent process X
and is defined by the covariance function

CeelXya¥)3%,0¥5) = Alx, 5y, )8(x,=x, )6y, -y,) (2.22)

where & denotes the Dirac-function,
To get a stationary process we must have

q(x,y) > 0 . (2.23)
Since white noise processes have infinite intensity

ECIF(x,¥)[%) = o

it is useful to define the average intensity of the output which
in our case is

2] )

ECig(x,y) 17} = a(x,y)mwih(x,y) ~ (2.24)

and if h(x,y) takes significant values only in a limited region
A near the origin, we get

~

ECIg(x,y) 71 = aq(x,y) ][ h(x,y) “dxdy (2.25)
A
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Another model which mignt be worthwhile considering in our case
is a stationary Markov sequence.
So far, we have used only one plane of generating masses.
As is apparent from tables 2.1 and 2.2 the combination of different
planes would be advantageous for a realistic model of first and
second order gradients. Schwahn (1975) has investigated this case .
and has shown that the autocovariance function of the simulated
field can be determined by adding the autocovariance functions
of the partial fields if no crosscovariances between the planes

.
LA el

are present. This case seems to be applicable in all kinds of
model computations. If crosscovariances in z-direction cannot
be neglected the full covariance matrix of the partial fields must 7
be used and computations become extremely laborious. The case of
a thick sheet of random masses and, as a special case, of a semi-
infinite medium has been treated by Naidu (1968).

The practical procedures of generating gravimetric data
from a point mass model can only approximate the discussed models.
Usually the anomalous masses are allocated to the intersections of
a grid in the (x,y)-plane, i.e. the generating field is a two-
dimensional array of mass points equidistant along the axes. If
the grid covers the infinite plane a good aporoximation of the
above models is always possible. If the grid is only given in a
finite region, the situation becomes more difficult because theo-
retically we will loose stationarity of the simulated function.
It can be expected, however, that stationarity will be good
enough for all practical purposes if the array of mass points is
chosen properly. Obviously, the density of the grid, its extension,
and the depth of the generating masses will be important param-

evers.

3. Error Models,

Two types of statistical error models nhave been used in

the computations: normal models and Markov models. The term
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normal model will refer to a series of numbers taken from a normal
distribution N(u,cz} with mean  and variance 32 . The term
Markov model will be used in connection with Markov sequences of
first and second order., The following discussion will be main-
ly directed towards Markov sequences,

We will assume wide-sense stationarity for these models =
and thus be able to use some of the results of section 2. Matters

A e,

are simplified to a certain extent by the fact that we are con-
sidering sequences only., They can be viewed as stochastic processes
d(t) where t <can take integral values only. Furthermore, since
we do not assume error correlations between profiles we will only

o o

consider the one-dimensional case.

The difference between the normal and the Markov model
lies in their correlation characteristics. Normal deviates are un-
correlated, elements of Markov sequences are not. If e, is an
element of the first model, we have

E{ei} Sy
E{(el-JN)(ein)} = J;] (03519
E{(el-;N)(ej-;N)} = 0 #

where E is again the statistical expectation.
ki d‘L = d(t) 1is an element of the second model, we have

E{d.} = u,
i M
E{(d -.“)(d g li = } {Sad)
E (dl- ')(dl,?- H)» = C Kom oy e 3 ’
where <. is the kth autocovariance with the corresponding

correlation

Gl

~
1]
o




Stationarity of the models is apparent from the first two equa-

tions of (3.1) and (3.2). Their difference is obvious from the
last equation in each group. While any element e is inde-
pendent of any other element ej , each element di of the
Markov model does depend on one or more of the previous elements;

all di have the same univariate distribution but are correlated.

The following presentation of Markov sequences will only
cover those characteristics which are interesting for the sub-
sequent computations. Since the presentation will be rather
heuristic it may be necessary to consult a more detailed expo-
sition. The introductory texts of Parzen (1962), Yaglom (1§73),
and Kendall (1976) have been found especially useful.

Markov sequences are distinguished by their order. In
an intuitive way the order of the sequence is equivalent to the
smallest number of independent values necessary to describe the
correlation in the series, Thus, a Markov sequence of first
order is of the form

d, = rd, + e (3.4)

where we have only one coefficient r describing the correlation.

To obtain the correlation between dL and d, , we apply the

L -

above formula to d | and obtain

Inserting this into equation (3.4) we get

d =r°d _ +re + e (3 <9]
X L™ L L=k o
Continuing in this way we see that the correlation between d
and d., . is r® and that we can write

L+X

o e
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Keeping in mind that r is real r, < 1 and that the correlation
function is symmetric we obtain the covariances Cy by

a2 T L B4k
G iy L¥R
2=0
02
g, = b g (3.7}
k 2
l-r

Thus we can express the variance & of the Markov sequence of

M
first order in terms of the variance ;i by
02
2 N
g = (3.8)
M 1_r2
This shows that if [r, is close to one J; will be much larger <

than O Thus a high correlation of sucessive values will pro-

o

duce large amplitudes even if the disturbances are small.

The relation between the spectral density and the co-
variance function of a stationary Markov sequence can be re-
presented in a form similar to equation (2.15)

where de(w) is the spectral density, c;d(k) the covariance
function,and where k can take integer values only,.

Conversely, we obtain .

e (k) = == {5, .(w)et"5dw . (3.10)

id 2n _‘7ad

Using equation (3.7) we have for the Markov sequence of first order




15§

where

Since the covariance function is symmetric in k -

we obtain

) v k| ~iwk
de(w) = C L e e . (3180

After some rearrangement the summation of the series will result

in
S. . (w) = of 1 (3.14)
> [ ki "N, 1w 2 '
ety
or
S, (w) = o} 1 i (3.15)
e “(l-2rcosw+r”)

Thus, we have determined the spectral density from the covariance

function.
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A Markov sequence of second order, also called com-
pound Markov sequence or Yule sequence, is characterized by two

correlations r and r

N X We can define it by the following

equation

d. = ~a d, . = 8,0 . %€ (3.16)

where the coefficients a and a

. . are real numbers and satisfy

a | <1, ja,| <1 . They are connected to the correlations r,
and . by
rl(l-r:)
B -
, S
(3.17)
g = &
3, = - -

or conversely

—
(93]
—
w

~

l+a,

The spectral density of such a sequence is given by




and replacing e by z we obtain

S (W) = C. e T . Y =
dd 2 2=a, I I=2a, J17=4, J{T-74,)
and aoplying partial fractions -2
S (w) 3 { 2y (al ]
3 = [ - [ — D G s G - 7)
dd (a,-a, \T'ala:) Bug o 2 a, 1 a,z
a, a. 1
" gl (z-a7 % l-a@z)} : (3.20) b

The functions 1/(1-alz) and 1/(1-azz) are regular in the unit
circle. Hence the series expansions contain only nonnegative

powers of z . The functions al/(z-al) and az(z—a:) are regular
outside the unit circle and have series expansions

for z, > 1 . Expanding in this way and using equation (3.1

)
i

we can determine the covariances

—
(95}
no
ok

—

., a a,
¥ 2 1 X 2 k

Caqtt? = (a,-a,)({l-8 a,) {l-a: o 2 3 }

2 172 1

o

The variance ’§w of the second-order Markov sequence

S

can be expressed in terms of the variance -7 . We use equation

o

(3.16) in the form
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and take statistical expectations on both sides

T = Ef + + ) + +a. }
E{e,,e;} = E{{d;+a d, _ +a,d, ,), (d;+a d,_,+a,d; ,))
£ (1+a+a’+2a r +2a r_+2a a.r ) -
Fig = Fggg by nagedgF R, e AR S

Substituting r and r in terms of a and a results in

1 2 1 2

1 + a

“

e (3.22)
(1-a,){(1l+a,)"-~a}} i

Equation (3.22) can be used to determine the factor c, in
formula (3.21).

Figures of covariance functions of Markov sequences and
of their corresponding spectral densities can e.g. be found in i
Kendall (1976). ,

Markov sequences of higher order can be generated in an
analogous way. The basic equation

d, = = &.d = al el R - d_a. L e {d.23)

has the spectral density

which can again be used to determine the covariance function.

The use of stationary Markov sequences is greatly
facilitated by the simple way in which they can be generated.
Equations (3.4) and (3.16) can directly be used for this purpose.
Subroutines for normal deviates e, are usually available in
program libraries. Otherwise, effective methods to compute normal
deviates are e.g. given in Hamming (1962). We then assume d_
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and previous terms to be zero and run the series for a number
of terms until the effect of these initial assumptions has be-
come negligible. From this point onwards the series can be re-
garded as a Markov sequence. To reach this point in a small
number of steps the normal deviates e, should be multiplied
by (3;/32)1/2 or (-2 /32)1/2 to obtain the right size of the

“MMY TN
variance for the values di . These ratios can be obtained from

formulas (3.8) and (3.22).

4, Results

The data used in the following computations have been
generated by DMA (Howard, 1976). It had been requested that the
variance of the gravity anomalies at ground level should be
close to Co = 1650 mga]2 and that the variance of the horizcnta]
derivatives of ag at the same level should be about G_ = 100 E7. .
The value of Co presupposes that a regional part of th; aravity
field corresponding to an expansion of about degree and order
10 has been subtracted. The field has been generated using a
grid of mass points with a spacing of 10' at a depth of 40 km. The
total area is 10°x15° , i.e. about 4150 mass points have been
used. The mass points have either a positive or a negative mass
of constant size or a zero mass. The selection was made accor-
ding to a normal distribution. More details on the simulation of
the data can be found in Howard (1976).

In view of section 2 this model has some restrictions.
The depth of the generating masses is about 2.2 times the mass
point spacing., Judging from tables 2.1 and 2.2 the high fre-
quency part of the first and second order gradients will be very
small and the respective fields will be smooth. Furthermore, the
approximation of stationary white noise by a jump process with
three possible states (+,-,0) seems somewhat inadequate. Future
models should at least have two generating planes, one at a deptn
of about 40-60 km, the other at about 15-25 km. The dense point
spacing is only necessary on the upper plane, the lower one may




have a much wider spacing. The point masses should be taken from

a normal distribution with the larger variance on the lower plane.

The following results should be seen with these re-
servations in mind. Thus, statements about accuracy may need

some qualification while the conclusions about operational perfor-

mance should be fairly general, Since the latter was the main
objective of this study there was no immediate need for a more
elaborate model.

Fig. 4.1 shows the simulated anomalous gravity field at
ground level with 20-mgal contour lines. The field shows large

variations with the extreme points at about plus and minus 120 mgal

and fo = 1741 mgal® . The variance EO is at about 96 E-
The formula used to estimate gravity anomalies at ground
level from the simulated data at flight level is

s = C__C lx (4.1)

SX XX

where s is the vector of gravity anomalies, called the signal,
and x is the vector of simulated data, called observations in
the sequel. It should be noted that contrary to section 2 and 3
covariance matrices are denoted by capital letters to simplify
comparison with other publications. Cxx is the autocovariance
matrix of the observations. Since

we have

C.=¢C_+¢C (4.3)

where t refers to any first or second order gradient used as
observation and where n is the error given by one of the error

models. C__ contains the crosscovariances between signal and

S A

observation, and since s and n are considered to be uncor-
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related we have

Both, s and t are quantities of the anomalous field. Their
mathematical relation can be expressed by integral equations or
infinite series. In formula (4.1) these relations are contained
in the covariance matrices, i.e. all infinite operations have
been performed on the covariances without approximation. Thus,
we have a consistent model for heterogeneous observations and
this characteristic property is preserved even if the covariance
function is not optimal,

The covariance function used in this report has been
described in Schwarz (1976). It has the advantage of numerical
simplicity and it agrees well with statistical estimates of the
anomalous field. Three of these estimates have been used as
essential parameters for the covariance function, namely

c_ = 1500 mgal® £ = 61 km G_ = 111 E? , (4.4)

where CO is the variance of the gravity anomalies, Z is the
correlation length of the corresponding covariance curve, and

G is the variance of the horizontal derivatives of the gravity
d;sturbance. A11 quantities refer to ground Tevel. Fig. 4.2 shows
this covariance function as heavy line. The dashed line refers

to a covariance function directly derived from the simulated
gravity field using a set of 9600 points spaced at 7.5 intervals.

[ts essential parameters are

T = 1741 mgal? T =52 km G_ = 96 E” . (4.5)

o O

It will be used later on to determine the influence of wrong
assumptions in the covariance function on the estimation.

R T
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Fig. 4.2 Gravity anomaly covariance functions used in the
computations. :

The observations at flight level (10 km) have been gener-
ated for a flight speed of 500 knots and an integration interval
of 10 sec. Thus, the separation of data points is a constant
2.6 km. The profiles are parallel and run in east-west direction.
They cover an area of 10°x15°. Generally, the profile spacing is
1°, except in a strip of 2°x15° where it is 20'. The choice of
the east-west profiles was suggested by the favourable error be-
haviour in this direction (Meissl, 1970) and because simulations

are especially simple with such an arrangement. There are no basi
f J g

=
O

changes, however, if an arbitrary direction is used as long as the
files remain parallel and the data points have a constant

separation.

-

cr
= 4

as been shown in Schwarz (1976) that the accuracy of

wr

cr

the estima

[

ion is mainly dependent on the point configuration
and not so much on the number of observations used. On the other

nand, it has been pointed out that for reasons of reliability
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all available data should be used. To combine both viewpoints the
following approach has been taken. An optimal point configuration
is chosen depending on the profile spacing and on the size of

the mean anomalies to be estimated. With the above conditions

on parallelism of the profiles and constant point separation we
can move along the profiles without changing the operator R

R=c_c!, (4.6)

Moving step by step from one set of data points to the next we
use all the infromation available. In each step we estimate one
or several gravity anomalies at ground level simply by multi-
plying a set of observations by the predetermined matrix R
When advancing along the profiles we get a whole series of esti-
mation points on ground which we will call estimation profiles
in the sequel. Thus, even long profiles can be processed very
fast

Fig. 4.3 shows the principle of the moving operator R
for the estimation of one gravity anomaly in each step using two

F'ignt profiie no 1

g S e Y

O = O = e GOy O

’////1 "M’ e e --_.«‘*.»_‘_r__f

-.—/_/__ - |nterpolation profile

Fig. 4.3 Estimation by a moving operator

E R B



profiles of observations. Obviously, the addition of more esti-

mation or more observation profiles does not change the basic
procedure. We can estimate point as well as mean gravity anomalies
by this method. It was fcund, however, that mean anomalies should
not be determined by a mean anomaly covariance function. The
smoothing properties of this function will cause a considerable
loss of information. Siinkel (1977) has derived detailed formulas
to estimate the loss of accuracy for a given block size and a

'
N 1Y

given covariance function. To avoid such a loss the following .
method nhas been adopted to determine mean values. Depending on
the size of tne block 3 to 5 estimation profiles are used at

b

ground level and gravity anomalies are estimated along these pro- :
files at the same rate as taken at flight level. Thus, in our
case the separation of tnhe point gravity anomalies along the
estimation profiles is 2.6 km, All values inside a block are
averaged to obtain the mean value. In this way the accuracy of the
point estimation is maintained and we obtain an averaging pro-
cedure which is linked in a simple way to the estimation method.
It has been shown in Schwarz (1976) that ag, T , and

2t
2t

T_, are the most important observations when estimating gravity
anomalies from east-west profiles, These three measurements have

|

il

therefore been simulated in each data point at flight leve 0
give an idea of the accuracy of point estimation, fig. 4.4 shows
about 3° of an estimation profile obtained from flight profiles
spaced at 20'. The standard error for the ig-observations is

+ 1 mgal, that of the gradiometer observations + 1 E The
normal error model has been used. The heavy line shows the exact
profile of the simulated field at ground level while the gravity
anomalies estimated from the corrupted data are represented by
dots. The agreement is very gocd with a standard error of about
+ 3.3 mgal for the point estimation, To determine how much of
this error is due to interpolation and how much to downward
continuation, we have determined an interpolation profile from
the same data but this time located directly belcw one of the

N -

flight profiles.

he standard error reduces to + 1.96 mga
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we can say that with the above configuration a measuring error of
+ 1 mgal at flight level will
to about
files 20'
will therefore improve the accuracy considerably.

be amplified by downward continu-

ation and when

+ 2 mgal interpolated between two pro-

apart to about + 3 mgal ., A dense profile spacing
Results for mean anomalies are given'in table 4.1. The ' -
same error model as above has been used.

estimated

The number of mean values
in each case is given and although the sample size is

small in one case, the internal consistency of the different

values is good. For comparison results obtained in the corres-

ponding accuracy analysis (Schwarz, 1976) are also shown. In
general, the figures agree well, But the accuracy estimates seem
to be somewhat smaller for block sizes below 30'x30'

for block sizes above 30'x30'.

and larger

Block Profile Number Simulation study | Accuracy study .
size spacing of values (mgal) (mgal)
15 x15" 20" 2.312 * 2. S T
30'x30' 20" 112 # 1.8 + 1.7
S 20" 26 + 1.3 + 1.7
1¥x1° 1~ 78 + 4.6 + 5.6
Table 4.1 Accuracy for different block sizes as obtained from

simulation and from accuracy studies,

The influence of different error models has been studied
for a number of cases. Table 4,2 gives results for mean values of
SR A profile spacing of 20', and a standard error of the
gradiometer observations of m__ =+ 1€E Mormal and Markov
models have been computed for é?fferent variances é The Markov
medel 1is second-order and has the correlations r, = 0.73
and r_ = UndS
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Block Profile Number 9 Estimation error m in mgal
size spacing of values | (mgal) Normal Markov
15" %x15" 20" 232 + 1,0 + 2,2 +

* 2.2 e * 3.

+ 5.0 + 4,5 + 10.7 -

Table 4,2 Comparison of error models

The results are remarkable because they show a signif-
icant difference in the general behaviour of the two error models
once the variance has reached a certain size. While there is not i
much difference on the + l-mgal level because interpolation ;
and downward continuation contribute the largest part to the error
budget, the difference is quite obvious on the + 5-mgal level.

For the normal model the estimation error at ground is smaller

than at flight level while for the Markov model it is more than s
twice the size. In the first case the error in 4g 1is controlled

by the accurate gradiometer data. In the second case the variance

:; of the generating process is enlarged by a factor of almost

3 due to the correlations in the Markov sequence, see formula

(3.22). This raises the standard error of o = + 5 mgal to about

Ty = + 8.5 mgal . The actual estimation errgr m_ = + 10.7 mgal
is even larger because signal and noise cannot be separated as
well as in case of the normal model. Thus, results will deteri-
orate considerably if the errors in the Ag-values at flight

level are correlated and if their variance is not extremely small.

The situation is even worse if the data are corrupted
by systematic errors. Only a few examples have been computed
and more representative studies are necessary. But a systematic
influence at the 5-mgal level may already turn the estimation
results useless for geodetic purposes.

Finally, some investigations have been made on the in-
fluence of wrong assumptions in the covariance function. So far,
only the covariance function C(s) with the essential para-
meters (4.4) has been used. It will now be compared to the co-




variance function C(s) determined from the simulated data with
the parameter set (4.5). To have an easy distinction the latter

will be labeled 'correct covariance function'. Results are given
in table 4.3. As could be expected the correct covariance func-

Block Profile Estimation error m_ in mgal ':
size spacing €{s) C(s)

15'215" e % 2,2 & 2.7

30'x30" + 1.8 + 1.7
1% 1° | + 1.3 + 1.0 P
1¥x 1° 1° + 4.6 + 6.2

Table 4.3 Comparison of different covariance
functions,

tion TCT(s) gives slightly better results for all block sizes when
a profile spacing of 20' is used. The differences are not large,
however, and we can conclude that the choice of the covariance
function does not affect the estimation very much as long as the
essential parameters are reasonably close to the empirical values.
This confirms results published in Moritz (1976). It should be
kept in mind, however, that these results are valid for isotropic
covariance functions only and may not hold in more difficult
cases.

The last line of table 4.3 which shows the 1°x1° mean
for a profile spacing of i apparently contradicts the above
conclusion. In this case the C(s)-function gives much better re-
sults. The most probable explanation is that the data are not
dense enough to get a useful estimate from the CT(s)-function. The
correlation length < s smaller than one hal
spacing and it has been found that results may become very poor
in such a case. Thus, estimation with a non ootimal covariance
function may in some cas

s give better results,
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5. Brief Description of Programs.

The programs and a sample computation have been added to
the report. Since detailed comments are given in the subroutines
we will present only a brief survey of the programs and point
out a few restrictions in the present version.

Basically, the program computes point or mean anomalies
at ground level from measurements at flight level. Terrestrial
and satellite observations may also be added. It has been assumed
that some preprocessing of the airborne data has taken place, and
that besides 5 second-order gradients the value of 2g s avail-
able in each observation point, In the present form a total of
7 observations per point can be read but fewer are possible. All
data should be available on a direct access file, The subroutine
ZINF selects the observation profiles needed for the estimation
of a specific point. The subroutine DATS reads these profiles and
deletes those measurements which are not needed. In this way the
core storage requirements can be kept relatively small. Further-
more, the simulated data from the file are corrupted by one of
the error models in DATS. This part of the program must be deleted
when handling real data,.

The number of estimation profiles for a specific mean
value is fixed in VMEAN. We have used 5 estimaticn profiles for
blocks larger than 40'x40', 3 profiles for blocks larger than
5'x5" and smaller than 40'x40', and 1 profile for blocks of
5'x5" and point values. If more than 5 estimation profiles are
used the corresponding DIMENSION-statements have to be changed.
The covariance matrices are set up in the subroutine PLAY which
uses the subroutine COVAX to determine the individual covariances.
The estimation according to formula (4.1) is done by the subrou-
tines FIX and SCAN. The subroutine COMPA compares these estimated
values to the true values of the simulation which are again
stored on a direct access file. The error computations are also
performed by this subroutine. Again, this part of the program
must be deleted when handling real data.

Three of the subroutines used are not listed. The sub-

o
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routine COVAX has been published in (Tscherning, 1976), Three cor-
rections which have been communicated by the author are listed.
The subroutines DSINV and GAUSS are available in the Fortran
Scientific Subroutine Package which can be found in IBYM publi-
cations, The first one inverts a double precision matrix stored

ande

in a one-dimensional array, The second one generates normal de-
viates.

In its present form the program accepts flight profiles
in east-west direction with 4200 observations each. This corres-
ponds to a profile length of 15° if the flight speed is 500 knots
and 6 measurements are taken at each point, From a total of 11

P L

profiles a maximum of 5 profiles is selected for each estimation.
Since the storage requirements are strongly dependent on the length
of the profiles, a subdivision of Tonger profiles might be con-
sidered. Because of the use of the direct access file an increase
in the number of profiles is not critical as long as the maximum
number of profiles in the core storage is kept to 5.

The speed of the data processing depends mainly on the
number of flight profiles used in each estimation and only to a
smaller extent on the block size of the mean value. As an example
mean values covering an area of 6°x13° have been computed using
the data configuration and the covariance function given in
section 4. With an average of 3 flight profiles for each estimation
about 30 seconds of CPU time are needed to determine 75 blocks
of 1°x1° ; for 5 profiles the time required increases to about
50 seconds. If we estimate 300 blocks of 15'x15' instead, another
10 % must be added to the time estimates. Thus, even large amounts

of data can be processed in a relatively short time,
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6. Conclusions

The simulation studies presented in this report show that
least-squares collocation offers an adequate model to estimate .
gravity anomalies from airborne gradiometer measurements. The pro- |
cedure is simple numerically and allows to handle large amounts
of data with regular requirements on core storage and small demands “é
on computer time.

The deviations of the estimated gravity anomalies from
their true values agree well with the estimates obtained from
corresponding accuracy studies (Schwarz, 1976). It should be noted,
however, that correlated errors in the measurements will strongly ;
influence the accuracy of the results., A second-order Markov sequence :
has been used to model the error process along the profiles. De-
pending on the size of the correlations and the variance of the
process, the mean-square errors will more than double as compared
to the uncorrelated case. Similarly, a bias in the data will im-
pair the accuracy of the results considerably.

The simulation of gravimetric quantities from.a point mass
model is considered in the spectral domain and conclusions are
drawn with respect to the resulting fields. In order to represent
adequately regional variations of the gravity field as well as the
local behaviour of the second-order gradients the medium and the
hiah frequency part of the spectrum must be modeled equally well.
This can only be achieved by using several planes of generating

masses at different depths. In many cases a model with two planes
may already be sufficient.
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Appendix A: Computer Programs
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SIMULATION STUDY AIRSBORNE GRADIOMETRY

THE PROGRAM CCOMPUTES PIINT AND MEAN CRAVITY ANOMALIES ON GROUND FROM
AERIAL GRAVITY aNlD GRADIDMETRY 4EASURIMENTS AND FROM GEJID INFCRYATION
PROVIDED 3Y SATELLITE ALTIMETKYe THZ CCHPUTED VALUES ARE COMPARED TGO
*TRUE® VALUES GEMcRATED BY A MASS ANOMALY “IDcle DEVIATIONS ARE GIVEN
FGR ALL CUOMPUTSED VALYUES AND T4E ZFFECT UF DATA PERTURBATIONS LF VARIGUS .
KI%NDS CAYN BE OETExM1%ENe AT THE PRESENT STAGE THE PRIGRAM IS XFSVRICTEC

T EaST-AcST PRUFILES

TMPLICIT KEAL #3(A--s2-Y),LG3ICALIL) <
COMMON /TICN/ 2P(12)oCPUL2)9dP(L2)19B(L15)9CIL8)9D(L19)sFA(19)yFI(L1R) :
LoTRANS(L2) oSRUS) 90yl v 4eS AT gRA N 9Z(Se2c00) 9¥XKP(12) ¢XaXP(12)gI0P
QU129 T) o XK 10) ¢KKKi1B) ¢ [T(LO69T) o NMoMMaNMyNNNy INIIL1Z) g NNV 9NV oMV Il
NI oMYV MUV oI 9 IT2ZeIFI
- COMMON /CMCIV/CI(12)902(51)¢SIGMAQ(300)eSIGMAI3CO)IoKI(25)9NLyLDCAL
COMMON /SAT/ L2(345)
DIMENSION AA(409540)¢932(23,46)9882(23623)9GO(110)4G0DilUleGNILD)
DIMENSICON AAA(1100)9RR(A1246)
EQUIVALCHNCE (AA(LlyeliorAn(ls)
CriTA GUeRE/2e3801495371.003/ $
9D090Ll92/0e¢0UD9 1400092000/ 971/24141592653500/ e

RE MEAN RAZIUS OF THE ZARTH . : :
GM PRODUCT OF THZ GRAVITATIONAL CONSTANT AND THE M4ASS OF THE EAPTH l
THE COMMON AREA /TICLK/ IS U3Z) T TRANSFER DATA FROM THE MAIN

PxROGRAM TO ALL OTHER SUORRUTINES. THE CCMMON AREA /C™CA¥/ IS USED T3

TRANSEER CATA FROM THZ MALY PKOGRAM VIA ThE SUBROUTINE PLAY T2 THE

SUARCUTINE CIVAXe

[aNaNaNaNaNaNalal

CO = 10)0/572957795100
COC = CG0/%3.
MA = 46 ;
MB = MA/2
| 00 110 I=1y4A
DU 110 u=1leMa
00 110 KR=1¢M3
AA(T9Jd) Ne
| 110 BulxeI) Oe
00 111 I[=1ly0l2
RR(Ie3) 10C.
00 111 J=1ls2
RRK{Isd) = N
0O 111 <=4,y
L1l RR(UIsK) = Do

D AT A FNPRT

INPUT COVARIANCE FUNCTIUN

(s N NaNaNal

100 READ (Se3) SyaedT(S)an2943)NsLOCAL
G FURMAT (20l49e7e6l5yL 2}
IF (NeNEeO) Gu 7O 101
LOCTAL = .TRUF,
N =2
101 N1 = nel
IF(eNUTSLOCALREADIS oL (SIGUACtZde T = 1y N1)
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13 FORMATU(12F542)
IF («NOTLCCALIWRITE(L,?7IISIGUAC(I)y T = 1y NI
T FURHAT(" EYPIRICAL ANT™ALY DEGREE-VARIANCES IN UNITS CF #5A(=$2:°,

3

-
<

1

*/925(12F5.2/))

S SQUARE OF THE RATIQ BSTWEEN RACIUS DF THE BJEAMMz? SPHERE AN
MEAN RADIUS (OF THE EaRTH
A CONSTANT FACTOR OF GRAVITY ANOMALY DEGREE~VARIANCE MICEL
KIUS) NUMBER OF CEGRES-VARLANCE MOUEL AS SPECIFIED IN:
TSCHEANINGILITSI:COVARLIANCE EXPRESSICNS F3R 3£1T40 AND
LDWwER JRUER CERIVATIVES UF THE ANGMALZUS PGTeNT AL
2SJU KEPIAT NC 225
POSSESLE MNUMSERS: 1wle3
K29<3 INTELER K2 f83 <3 IM LQQHJ;A fl?)
N OEGREE VARTANCES Y2 7O &% LUL N :
LOCAL EQJAL T2 ZTERC Ok zPLALE) :f “PI?.,uL i

FIRST CASE T LOSICAL vARIAELE: LT'
SEC3MD CASc «FALSE. THE EMPIRICAL
-VARIANCES “UST 2T REAU I[N U.ITS

- INPUT FLIGHT PROFILES AND MEASUREMENTS

READ (S5sl1 Ny VMM VI KXL

FURMAT

00 2 I-=
READ (592) o(I)eClTiaDCI)eGONIINWGO(I)9GON(I) oKKLI) XKKILD,

(1542312624 15)
Lo NN

LUID(Ied)9d=1eT)

FORMAT
o(n =

(507291543712

QUL)1%1000.

NN NUM3ER OF FLIGHT PROFILES OBSERVED

KK NUMZER OF PJINTS 9ER PRAFILE

KKK NUMBER OF M¥EASUREMENTS PER PIINT

KKL NUM3ER OF RECIKRDS TO 8k READ FxOM EACH FLIGHT FILE

VM4 MEAN VELSCITY COF AIRACRAFT I KNOTS PER AH2UR

vI MEAN INTZRVAL oSTHEEZN O3SSAVATIONS IN SECONDS 2F Tl4g

B CATITUDE ZF INMITLAL 20INT

G LONGITUDE OF INITIAL SUINT

J ALTITUDE 3F INITIAL POINT

1 §] NUMBERS SPECIFYING VEASUREMENTS AS IN TSCHERINING (19151
POSSI3LE NUMGERS: leieSe10 TU L&
SEQUENCE OJF (W#Be2S ASTENIINGeIR LESS THAN T MEASUREMENTS,
THE REMALINING RPNSTTIENS MuST Bt FILLED BY ZEROSe

& MATRIX STIRING Trc 20SERVATICMS.EACH RCW CONTAINS JSNE
PRIFILE «MEASUREMENTS AKS STOUREL POINT Y OUINT IN THE
SEQUENCE DESCRIZET Y [D4P0INTS ARE CRUERED ACCORDIING
TO ASCEeNCING LONGITUDE,2RIFILES ACCORDING 77 DJE e
LATITUOE.

GN VARTANCE OF Gculdso d”CULﬂfrJﬂS IN METER SQUARED

G2 VARIANCE Gr CELTA G IN ™“CAL SCUARED

GO0 VARTANCE OJF SEC2NJ DERIVATIVES IN EU SQUARED

NPUT INTERPOLATION PR ILZS AND MEAN ANOMALY BL2LKS

READ (395) IDIemMelFlelIT2 yVNeSYI
)

FORYAT
NNN =

(4[S5¢2F1Ca0

R

NM o= NN

KE =

) (T e (L)L) oK)
Te2913)
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27 KE = KEeX
ITZ = IT2
READ (IFI

K(I)
T

032) (Z(Lled)ed=1,1T2)

32 FORNMAT (4A4)

X =0

DO 31 I=1

K = Kel

RR{Ky4)

RR(K¢5)
31 RRIK¢0)

IFL = I7Z

101

MM
KK

IFI
17z
M

M1

v IT244

Z(1l.1)

Ztlyl~1)

Zlly1+2)
/4

-1 POINT VALUE

1 MEAN VALUES
NUMBER OF [NTERPSLATION PRUFILES - PIINT 2R
KEQUIRED NUMGER OF INTERPOLATION PIINTS PER
OR MEAN VALUYES

MSAl VYALUES
FRIFILE = POINT

FILE NUM3ER WHERE MEAN YALUeS OF TRUFE MODEL 6&RE STORED

NUMBER OF MEAN VALUES STGRED IN FILE *IFI°*

SIZE OF MEAN ANGMALY BLAOCK IN MINUTES OF ARCe 4MUST 2 [ERD

FOR PIIMT VALUES.
MEAN PROFILE SPACING IN MINUTES OF ARC

ALL OTHER QUANTITIES AKRE AS OEFINED FOR THE FLIGHT PKRCFILES

IF (I0I)
22 WRITE (64

24922423
254 1D1

25 FORMAT (///2Xy*PARAMETER IDI CANNOT BE ZERJSEXECUTION INTEZQRUPTED?

Ww///)
GO T2 301
24 YM = Qe

0D ATA

23 WRITE (6

14 FORMAT (/
WRITC (o

12 FORMAT (°
L'S =*yF1l4
2Xg'K3 =,
WRITE (o0

20 FORMAT (/
12X9 *MEAN
2e29/2A9'5
3'MEAN PK)
00 172 =1
WRITE (6,

18 FORMAT (2
WRITE (6

15 FORMAT (2
IDE:*yF 742
2)

19 WRITE (6,
15 FORMAT (2
1'F7-2"

ZMBERS: "7
WRITE (&,
WRITE (69

951 FURMAT (2
00 & I=NN

IR = [=-NN
WRITE (64

17 FORMAT (2

CINTROL

14)
5S0£¢'0 AT A COC NTR OL®y//50X)
12) SeAWKI(S5)eK29<3eNoLICAL

PARAYETERS SPECIFYING THE DEGREE-VARTANCE vO0cEL*'¢//910Xe
e659/10Xe*A =" 4F12.49/1CX 9 'KI(S) ="y I149/13Xe"K2 ="417 +/1C

IT o/10Xe "N ='903 4/1J0Xe'LOCAL ='y0Lb/)
2C) VMMIVI VHeVMySMI

/2Xe *MEAN VELDCITY JF AIRCRAFT IN KNOTS PFR HIUR: ',
INTERVAL BETAZEN MEASURING PTINTS IN SECONDS 2F TIw
=S

[ZE GOF MEAN ANUMALY BLUCK:I ' eFSe0e*%'9F54C0 "
FILE SPACING:®gFT742e' MINUTES*,///)

o NN

18) I

Xe ' FLIGHT PROSILE NO*913)

LS BCL e ClTY o0l yKKLD

Xe*INITIAL POINT OF PRULFILE LATITUOE: "+ Tale" LONGITU

¢' ALTITUUE:*9yFT7e09/2Xs "NUMBER OF PUINTS IN

L6} GNUEIIoCOUTI) oG20EI) g LI T ol wd=Le?)
Xo'VARIANCE CF GECIO UNDJLATIONMNS:®eFTe24*

PRUFILE: Yy (&

J¢ DELTA G:°*

OF SECCND JRDER DeRIVATIVES: *9FTe29/2Xe'SPFECTIFICATION NU

I3/}
951)
951 )
A7)
NoNM
N+l
17) IR
T

Ne'IN

ERFPOLATICN PROFILE NC's13)

LA
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4

352

29

300
27

953

303

230

233

234

235
323

(&%)
~

O(I) = D(I)~1300Q.
WRITE (694151 S(I19CCL1) o011 oKK(T?

COMPUTATIONS

WRITE 16,4951)

RRITE (69951

WRITE (5455¢)

FOIMAT (/50X+°'C O M P UTATION S w/)

COVARIANCE MODEL

RB2 = RE®REI®S

KI(3) = <2

KIf4) = X3

LMODEL = Necl.0

CI(E) = AFR32#%1.00-10
Citicr = s

CatlL Covax

DETERMINATION COF FLIGHT PRJOFILES NECESSARY FOR
NUMBEREUD [CaE

CC 30 I=1yN¥
8(.) = d(i1+C2
Cil)y = CLIN=C3

VVY = VMMEVI/3600.
CALL VMEAN (VM)

IF 1VM) 301,28,28
ICKE = NNAW

VM = vv=CQa0

VVM = V4030

IMM = 1

CALL ZINF (ICKEoVMI
IF (ITZ) 302429425
IC = ICKE=-NN

WRITE (69953) [Co(TRANS(J)ed=1eNJ)

FORMAT (//2Xe*INTERPCLATION PROFILE NO®¢I39® USES FLISHT PRIFILES
INOS* 93FSeUe//)

INTERPOLATICH

COMPUTATICN Cr AUTOCIVARIANCE MATRIX UF OB8ScRVATIOVS CXxX

CALL PLAY (AA,BBe=-19yMA,M3)
My = J

DO 23u 1=l.NJ

MU = MU*KKP([)IKKLP(T)

JLL = NysMy

Jd = 0

D0 232 I=1eNJ

KKKK = K42(1)

00 232 [I=1yXKKK

D0 232 y=ls7

IF (ICP(IeJdl=1) 2334923492358
CONT INUE

GG 10 232

JJ = JJ+l

IN = TRANS(]D)

RA(JId9dd) = AA(JJeJdy) *ONLIN)

Gg T3 23
IF (ICP(Iyl)=3) 233,323,324
Jd = JJdei

IN = TRANS(I)




(e NalNal

oo

[aXaNal

[aNalal

324

232

956
973

95¢

9746

248

236
249

23T

231

240

241
239

250
242

307

33

AALJIJ9Jdd) = AALJJI9 I +GOLIN)
GO TO 232

Jdd = Jd+l

IN = TRANS(I)

AA(JJyJJ) = AALJJeJJ)+GOD(IN)
CONTINUE

INVERSION CF CXX

CALL ORDSR (AA9MAyMUs-1)

SOF = 1.E-SO

CALL DSINV (QAAsMUs3DFsIER)

IF (IER) 95549569955

WRITSE (64973)

FORMAT (//2Xe *INVERSIGN OF COVARIANCE MATRIX OKAY'y//)

GO TO 248

HRITE (54374)

FORMAT (//2Xs*INSTABILITIES JCURRED ODURING THE EXECUTION CF THE IN

LVERSION PROGRAMe EXECUTION INTERRU2TED.'y//)

GO TO 302

CALL URDER (AAWMA,sMUy1)

IF (JJ=-MJ) 2309237236

HRITE (64269) JyieMU

FORMAT (/20X *NUM3ER OF RCOWS IN CXX-MATRIX ERKONEQUS JJ="'yI3,°4L="

1913/}

00 231 I=lyMu

DO 231 J=1sMU
AALJsI) = AA(I4J)
MUY = 4y

COMPUTATION OF PRECICTION MATRIX

CALL PLAY (A4,88,04MAsML)
00 239 J=1l.MU

D3 240 I[=1¢%0M

SUM = O.

DO 240 JJ = l4MU

SUM = SUM+33(1yJIIFAA(IYWI)
B28(Iy1) = 5UM

DO 241 1I=14MuM

AA(ITyJ) = B33(II,1)
COMNTINUE

COMPUTATION OF SIGNAL (POINT OR MEAN VALUES)

IZE = =}

CALL ODATS (KKL9GONeGI90GNDHIZT)
CALL SCAN (AA MAy[MMyVU,3R . ICKE)
DO 242 [=LleMUM

00 242 J=1leMuM

SUM = 0.

CO 250 JJ=1l.My

SUM = SUM+AA(T 2 JJ)¥83(Jedd)
BBB(L[ed) = LUM

COMPUTATICN OF COVARTANLE MATRIX CF SIGNAL CSS

CALL PLAY (AAs35¢LeMA M)
D0 307 I1=leiun

00 307 J=1e4UM

AALJel) = AALT4J)

LA s

-
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O

COMPUTATION QF ERROR COVARIANCE MATRIX JOF SIGNAL

m
w
(%)

00 243 I=1,MMUM
DO 243 J=1leMUM
243 BB3(IsJd) = AA(I4J)=-838(IyJ)
ICKE = ICKE+l
IF (ICKE=NM) 30043009302
302 ICKE = NNN

RER TN TR ESSUGE S B

DG 326 I=1+<E
306 RR(UI+1) = RR(Iel)/C2
00 302 I=NNNNM
308 3(I) = 5(I)/C0
SUM = 0.
O0C 310 I=144Un
310 SUM = SUM+BE2(I.1)
IF tMUM-1) 311¢3114312
31T Su4s = L
Gu TO 313
312 SUMS = MUMF(MyM=-1)
313 SMI = DSIAT (SUM/SUAS)
CALL CIOMPA (RReKEySU4%,SUMS!
yM = y2/CCO
IF (IJI) 966+5599959
963 WRITE (642) VMyVvM
8 FORMAT (//40Xs*MEAN VALUES FOR BLOCKS OF'"9S5409" *'455404' MINUTES
1% //)
GO TO 370

968 WRITE (6¢772)

972 FORMAT (//50X+*PCINT VALUCS'+//)

70 ~RITE (6e371)

971 FORMAT (1UXe" N3 *9SXe'LATITUDE" 45X, *LONGITUDE" 95Xy "CL4PUTED 33X,
LTRUC 9 TRy "DIFFERENCES s 5Ky "PERCENTAGE 9 /4TXe *VALUES 478, VALUES',
210Xy 'C-T"¢TKy'CF NECESSARY MEASe',/)

I =1

Ju = 2

JLL = ¥XK(ICKE)
304 WRITE (5932) 1eBIICKE) ¢RAAT 1) sRA(T92) «RRUIT9SIeRI(T95)9R2(I43)
68 FURMAT (I1392Fl3e210X9FTal99X4FTalrTX9FTlalsFloal)

20 66 I=JdLesle
65 WAITE (L£90T) I WRRI(IeLl)ePRIT9ZI9PRITI¢5)9RR(Iw0) ¢RRIT,3)
67 FU2MAAT ({139 F20e205X 9 7e299X9FTel9TX9FTeleFlned)

[CKE = JCaAEel

JL = JLL+2

I = Il

JLL = JLL+KL(ICKE)

IF (1CKE=-NY) 3C64324,305

305 WRITZ (59399) SuMeKEe5UMSeSMI

309 FUORMAT (///&X9*SUA OF SQUARSES: "¢ FlZe20/2Xe*STANDARD DEVIATICN SRIM
199150° MSASURIEMENTSS "eF10e29' MOAL" /2% *FORMAL STANODARD JEVIATION
2 FROM COLLICATION:Y9FJele' MCAL'e//)

301 STapP
END

SUBRCUTING VMzAN (VM)

DETEIMINES SUANTITIES FIOR THE MEAN VALUE COMPUTATION
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901
902
911

910
913

914

915

912

4156

VM MEAN SIDE LENGTH O2F BLLOCK IN MINUTES DF AC

RAN ZONE OF INFLUENCE ON EACH SICE OF INTERPOLATION PRIFILE.

NNV NUM3ER CF POINTS FZR ONE MEAN VALUE AMND UNE FLIGHT PROFILE

MMy HUMBER OF PJINTS ON EACH FLIGHT PRUFILE USeD TO SET UP THE
ESTIMATION OPERATIRe MMy MUST ZE JDJ AND GREATER THAN l.

MVY SEPARATICN OF rHe A30VE PIINTS IN UNITS GF vyM

MV NUMBER Or INTERPCOLATION PROFILES FUR MEAN VALUE UF CIZE w4
NV NUM3ER Or PIINTS 3ii EACH INTERPOLATICN PR2OFILE USEC FOR THE
ESTIMATICN

IMPLICITY REAL $o0(A=-N93-Y),LCGICALI(L)

COMMON /TICK/ BPLl21eCP(12142P (12980152 9CtL51sDEL5)eFBIL5),FCLLS)}
ToTRANS(L12) 95R(5) 9Ly CCCeVVMySMIpRAN9Z (5942001 9XKP(12) 4KKKP(12),410P
20129 7)o KXUL0) o XXM (1) o TTELO9T) oNT oMMy NG NNT9 INT (L2 o NSV av oMV o ILKy
NJ9RVY oMV 9 [DI 9 ITZy 151

MMV = 3

MVVY = S

NV =1

RAN = 1.5%V4=C00

SMI = 1.5%S4I%C00

IF (RAN=-SMI) 901+30¢y902
RA% = SMI

SMI = le

IF ¢{¥YM-40,) 910,910,211
My = 5

ICK = =1

GO TO 912

IF (VM-54) 9144913,513
MV = 3

ICK = 0

GO TO <12

My = 1

ICK = 1

IF (VM) 912,315,912

VM = YVM

NNV = 1

RETURN

END

SUBROUTINE ZINF (ICKEsVM)

DETERMINES FHf PRIFILES TQ bE USEC FOR HE INTFRPOLATISN OF A SPECIFIC
POINT USING THE LATITUDE ZLAT JF THIS PCINT AND ThE QJUANTITY RaN AS FIXED
BY THE SUUALUTINE VMEANGT=Z PROFILE NUMSERS ARE STIRED IN THF AKQAY TRANG.
1C<e NUY3IER UF INTERPULATION PROFILE:

IMPLICIT REAL #8(A=r19y0-v),LACGICALIL)
COMMON /TLCK/ BRUi)elPULZ) 0P (L2)0ECLA) oCILS) oULLS) k315 4FILLSI
LeTRANS(L12)9SR05) oCOsCODyVVMySMT ¢RANGZ (509200 ) oKK2( 1) o XRXP(12)9iliP

2010207) o KLU16) g KAK(L1O) 9 TO(1A0T) oNNg"MeNMgNNNg INTIL2) ¢ NNV eV oMV 10Ky
ANJ e AVY oMMV o [OL ¢ ITZ0IF!

SELECTION OF FLIGAT PROFILES FOR INTEXPOLATION PROFILE NUMRERED ICKE

N =2 0

BLAT = B(ILKE)
B8LO = C(ICKE)
HET = D{ICKe!

.
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41

NNV = VMFOC3S(BLAT)/VVM
IF (MVV=95) 419+419+420
419 NMVV = 5
420 IF INNV=1) 42144219422
421 NNV = KX(ICKE)

422 1TZ = 1
STI = vvv
STT = STIsVY™
STI = vmMvy/s2

00 410 I=1,10
410 TRANSI(TI) = C.
BLATL = 3LAT+RAN
BLAT2 = 3LAT-RAN
L= 1
Jd =1
401 8t= BtI)
IF (BL4GT2LATL) 30 TU 40C
IF 1BLeLTeLAT2) 3C TL 430
TRANS(J) = I

AP(J) = 21

CP(J) = BLO-STI=STT/OC2S(3(1))
oP(S)Y = 2t

KKP(J) = MMy

KKKPtJ) = XK<(I)

FS(J) = DJe

FCLJY) = STT/CCOSt3tI)

DO 409 K=147
409 IDP{JeK) = IDLILK)

N =
J = Jed
400 I = [e1

IF (I-NN) 40144014402
402 IF (NJ) 61294134412
413 ARITE {5e414) 3LAT
4ls FO2MAT (///CX9"ND FLIGHT PCFILES TN THE DEFINED RESIOVe INTERPOLA
LION FRIFILE AiTi THe LATITUDE BLAT=%¢FTe29' CANNOT 25 DETEIMINED
2v///7)
IMM = [MUeX«P(ICKE)
LCRE = ICKESY
IF (ICKE=NY) 41646154517
17 117 3 =}
GO T3 418

PATTERN OF INTEAPILATI
VALUES USED FJIR INTERP

3 I

N PO
LAT

NTS FOR SPECIFIC MEAN VALue
N OF GNE PRUFILE ARE STUiED IN /8S5O/

412 S5TL = My

ST = vw/sSTI

J = NJ+L

IF (LX) 403,406,435
403 8P(J) = 3LAaTe245S5T

BPlJei) = TBULATeST
BP(J*2) = OLAT
AP (Je3) = 3LAT~-ST
BP(J*4) = BLAT=2,%ST
G0 T30 «us

4Qe 2P(J) = A_ATST
gPlJel) = BLAT
BP(J*2) = BLAT-ST
GO TO 405

405 2P(y) = 2LAT

404 D00 637 <=1l+My




(sl sEaEaNaNaRaNalal

[N a¥al

407
418

42

J = NJ+K

CP(J) = 3LO

OPtJ} = Hel

KKP(J) = NV

FB(J) = DJe

FC(J) = STT/OCOSIBLAT)
XKKKP(J) = 1

IDP(Js1) = 3

00 407 [X=2,7
IDPLJ,yIK) = 0
RETURN

END

SUBRQUTINE PLAY (AABByMILO,MA,MB)

COMPUTES COVARIANCE MATRICES

MOLGC =1 AUTOCOVARIANCE MATRIX GF OBSERVATIUNS CXX STORED IN

229

221
222

214

223
228

212

ARRAY AA
O CROSSCCOVARIANCE MAT2IX OF SIGNAL AND OJ3SERVATIIN CSX
STUREC IN ARRAY 38
1  AUTOCIOVARIAMCE MATRIX OF SIGNA CSS STORED I ARRAY A
MA,MB DIMENSIONY PARAMETERS OF AA AND Bo AS DEFINED IN CALLING P20GRAM

IMPLICIT REAL =3 (A-HesO-YV'yLOGICALI(L)

COMMON /TICK/ 3P(12)9CPL12)4DPIL12)9BILLE)eCIL15)sDILS)sFR(L6)4FI(16)
Lo TRAMS(12) 9SRIS)eCOyCOT o Vv sy ST sRANGZ(594200) 9KKP (121 eKAXP (L2102
QU129 T) oKX UE10) g XKIL1O) 9 IC(169T) oNNgMMoeNMyNNMe INT(L12) gNNV NV My eICKy
ANJoMVV oMUY 4 IDI W ITZyIFI

COMMON /CMCOV/CI(L2)9CRIS1)¢SIGHMAOI300)3SIGMALI300)¢KI(251yNLoLOCAL

DIMENSICN AAtYA,MA)438IM8,44) ’

DATA GM¢25/373014+6371a003/

INPUT POINT P

JV = NJevy

IF (MOLO) 222,221s221
IR

GO TC 222

I = NJel

ItL =0

Iy = 0

IJ = [JeILL

ILL = 93

DO 228 4=147
IF (IUP(IyJ)) 22942295229

ILL = TLLel

CONTINUE

R = grP(I)

RC = P 1D

CRIEL10) = GM/IRE+DP(I))%=2
RFB = FBI(I)

RFC = FC!I)
CRI2) = DPI(I)
J =0

KT b/

1J LJeXT=ILL
TJ J

ITr = ¢

RBR = RgeTJ®PFB

B REE TN

-
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251

250

210

223

224
208

231

2390

304
300
303
302

3e)
321

313
307

335
303

633

RCR = RC+TJ#RFC

CR{e) = DSIN (RER)
CRt&) = 0CIS (RuR)

IF (MOLJ) 250,251,250

INPUT POINT 72

IT = 1

1140 = 0

Ga 12 210

IT = I

1149 = 1J

R33 = BPI(II)

RCC = CP(II)

CROLL) = GM/(REDP(II))&=2
RF3B = F3(I11)

RFCC = FC(IL)

CR{2) = DJP(II)
IF (I-11) 223,226,223

JJy = 0

GC To 268

Jy = g

TJod = JJ

I1J4 = IIJJeITT=JLL
JtL = 0

D0 230 JX=1l.7
IF (IOP(IL14Jd%)) 231,230,231
JLL = JLL+1

COMPUTATIUN OF SPAEXICAL OISTANCE

CONTINUE

RBBR = nA3+TJ,=2FcB
RCCR = RCLCeTJYuxRFCO
§5 = RICR-RCR

CR(5) = OS5IV (R33R)

CRIT) = 2CQS (R58R)

CR(8) = DSIN 1SS)

CR(y) = 0C3S (S5)

CRIL) = CRIGIECRI5)*CRISIFCRITISCRII)

COVARIAMNCES

IK = 1

XIt6) = ILP(T,IK)

IF (KI(5)) 30043139302
NRITE (29303) Il.40(e)
FORMAT (/29X9"SRPIR [
1L = Ty*ix

IF (I-11) 31943204319
IF (J=Jd) 31943214319

N INPUT SPECIFICATICN FCR PRUFILE®,

K< = IX
GC T3 3u?
IKC = 1

KICT) = IJPLTIeIXL)

IF (KI(T)) 37643074308

NRITE (59333) [Leslt T}

Jdd = [lJavikx

CALL COv3x

CALL C3VEX (C2VY

IF 10ABSICOv)=al) 537,533,636
COv = %o

r
.

Jete'e i)

s

o e
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634
316

317

307
310

305

209
253
254
252
211
213
225
215

226
227

300

304

302

305

44

IF (MOLO) 31643174316
AA(IIIsuJu) = COV

GO TO 307

BB(IIIsJJJ) = COV

SETUP OF CCMPLETE MATRIX

IKK = IK<+1l
IF (IKK=7) 309.309:310

IK = [Kel

IF (IK-T} 30443044305

Jd = JJdel

177 = 1

IF (JU=KKP(II)) 208,209+209
II = I[Iel

IF (MOLO) 25242524253
IF (II-JV) 21242104254
GO T2 211

IF (II-NJ) 21042104211
Jd = Jdel

KT =1

IF (J=-KxP(1)) 2124213,213
I = [«

IF (MOLO) 22542264226
IF (I-NJ) 21442144215
GO TO 227

IF (I-JV) 21442144227
RETURN

END

SUSROUTING ORDER (AAsMAMyNDEC)

SHIFTS THE UPPER TRIANGULAR PART OF THE REAL SYMMETRIC MATRIX AaA

INTO THE FIRST MA%(MA-1)/2 STORAGE LOCATIONS OF THIS ARRAY ANU

VICE VEXSA

MA DIMENSICN OF AA AS DEFINED IN CALLING PROGRAM

L] ACTUAL DIMENSICN OF MATRIX

NOEC -1 TWO-OIMENSIONAL ARSAY INTO ONE-OIMENSIOYAL ARRAY

1  GCLINEDIMENSIONAL ARRAY INTO TwWO-DIMENSIONAL ARRAY

IMPLICIT REAL =3(A-+440-Y),LOGICAL(L)
DIMENSION AA(MA,MA)

IF (NDEC) 30043004201

TWI-OIMENSICONAL ARRAY INTO UONe=-DIMENSIONAL ARRAY

I =1

J =1

XK =1

N =1

AALLsd) = AA(KN)

K = K*}

[F (K=N) 302,302,302
I = Ie1

IF (I-MA) 3C443044205
J = Jel

I =1

GO TO 304

A ebae
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303

307

301

309
312
310

311

314

315

313

3ce

N Nel

X 1

IF (N-M) 302,4302+307
GO TO 308

ONE=-DIMENSIONAL ARRAY INTO TWO-DIMENSICNAL ARRAY

MM = M (Mel)/2
MC = MM/MA

MR = MM-4T sva
I = M

Jd = M

K = MR

N = MCe}

IF (X) 303,3104311
WRITE (b692312) NyK
FORMAT (10X *'ERR0OR IN PUSITION'9213)
K = "a

N = N-1

AALT ¢o) = AA(KeN)
K = K-1

IF (K) 313,213,314
I = 1=1

IF (I) 31543154311
J=1

J
T0
M
M

IF (N) 30843C84314
RETURN
END

SUBROUTINE JATS (KXL93N¢GO9G20w121)

READS THE SIMULATES *ESRORLESS® DATA FROM A DIRECT ACCESS FIi
CORKUPTS THESE VALUES 3Y OIFFERENT KINDS OF ERRIRSe IN THE »
SETU® SIX MEASUSEYENTS ARc READ FOR EACH POINTy THE FIRST TH
QF wHICTA ARE USED.

<KL NJMBER OF RECOIIADS T7I BE READ FROM EAUH FLIGHT FILE
121 =1 NORMAL OEVIATES AlTH VARIANCES GveGD4G00 ARE ADDEDS 73

TRUE vaLuUS>

Q YULE TIVE S5ERIES WilTH CORRELATIONS 24733 AND 00327 IS
ADDED TO CaavITY ANOMALIES

1 LINEAR SYSTEMATIC cAROR IS ADOET Tu GRAVITY ANOMALIES

IMPLICIT REAL *8(A-440-Y),LIGICALIL)

COMMON /TICA/ 3P(12)+CP112)90P(L2)eBULS)eCILE)sDUL5)sFALLE)FIILS)
LToTRANS(L2) oSRIS) o Sp 0N VVMeSHT g AN 9Z(592200) 9KAP(12) 94X KP{ T} 2P
E120 7)o <ULl oKL ILS ! wIOTLAT) e gMmaNMe NNy TNIIL2) o NNV e NV e MY 1CTC
ANJaMVY oMUy G [ 2L [TLeIFI

COMMON /5naT/ 21(3,5)

DIMENITIUN S5¢lLC)933010)145C2(10)

REAC CaATA
DEFINE FILE L11(T79264CN0LeX1L}

DEFINE FILE 12(T7e24309L9%a2)
DEFINE FILE 13079250090 e41 )

o o




[aNalal

(aNalal

502

500

S0l

503

5Q7

505
506

508

DEFINE FILE
DEFINE FILE
DEFINc FILE
DEFINE FILE
DEFINE FILE
DEFINE FILE
DEFINE FILE
DEFINE FILES

12 = 591
IKK = KXL%6
AM = Q.

I =1

IX = KKK(I)
J1 =1

JK = TRANSI
JJ = 1

J2 = Jl1e+599

14(7¢24004L9K1%)
15(7+24004LeKLS)
1ol T924004LoX16)
1707924004 LeX17)
18(7924C0yLeK13)
19(7+24004LyX13)
20(7+24004L9K2T)
21(T792430sLsx21)

{e]e]

I)«1Ca

READ (JK' JJ? (Zl1ed)9d=l1eJ2)

J1 = J1+500

Jd = JJel
IF (JJ-K«<L)
I = 11

IF (I-NJ) 5
IF (IZI) 50

50095029501

02+522,523
745089507

NORMAL DEVIATES

00 506 i=1ly
IK = 63KX(1
K = =]

JK = TRANS(
DG 505 J=ly
K = Kel

S = Gd(J4x)

CALL GAUSS

ZZULe1) = 2
S = GOD(JK!
CALL GAUSS

2Z(I421 = 2
CALL GAUSS

ZZ(143) = 2
00 5935 Ju=1

NS

)

1)
I<y5

(LZySeAMy V)
(Ied)ev

(I29S59A%,V)
{Ted*l) v
(1Z29SeA%yV)
([gde2)ev

W IX

II = X=IXeJy

Z(IeI1) = 2
CONTINUE
GO T2 510

CGRRELATED

00 511 I=l,
IK = 6%KKI(I
K = -1

JK = TRANS

S = GO(JX)

CALL GAUSS

CALL GAuUSS

V = =lel

VYV = 5

00 512 J=1¢
K = Kel

Lilydd)

ERRORS

NJ

)
(1
(IZ+SeAMsU)

(TZeSeaMyuu)

I<+6

CALL YULE (UgUUsVeVVeSeSSeI2)

LItly1) = 2

(I19J)eSS

)
P TN 2




512
511

laNalal

509

S16
513
513

516

[aNaNaNaNaNRis)

(aNaNal

> o
L Y
& v

2Z1I42) = Z(lyd%1)
ZZ(143) = J(I449%2)
0C 512 JJ=1,1Ix

II = K=IXely
Z(IeIL) = ZZ(14dd)
CONTINUE

SYSTEMATIC ERRIRS

GO TO S10

03 Y13 I=1eNJd

IK = 5%K<( 1)

K = -1

JK = TRANS U1

S = Se

SS = KXL*190

S = S/SS

SS = Je

DO S14 J=1+1%,y6

K = KXol

SS = 5SS

Zi(Iel) Z(IsJ) eSS
IZ(142) 2(lyJdel)
L2ML93) = L(IyJe2)
20 S14 Ji=1lelx

Il = K%[X+dJ
ZILyII) = Z2il1493d)
CANT INUE

00 S15 i=1le\J

IK = KK(I)=KKK(D)e+1l
00 S5 J=I%,IKK
Z(TsJ) = 99599,
COMTINUE

RETURN

END

SUBRIOUTINE STAN (AA MA,[MM,VY4RR, [CKE)

COMPUTES OMe PRIFILE CF POINT OR MEAM VALUES

AA PREJICTION “MATRIX
MY SEQUENTIAL NJUVEER CF MtAlw OR PIINT VALUE
RR ARRAY TO STOKE THE CQO"PUTED vaLUES AND Teere COQROINATES

ALL OTHER QUANTIT.LES AREL AS DeFINED IN CALLING PRUGRAM

IMPLICIT FEAL #3(A=4935=-Y),L3GICAL (L) .

COMMON /TICA/ BPLL12)9CPIL12) 40P (L2)e3(16)eC15)90lL5)eFI(15)eC2(15)
LoTRANSIL12) 90305) 920l 0eVV e SoT 3 AN 9 Z(594200) 9¥XKPIL2) 9 k<P I 12) (0P
SULZoTY oX <A ln) o X iL5) o TUT15eT) pia™NoMMa Mo NNNg INT(12) 9 NNV e NV ¥V Il¥y
ANJaMVv e " Myel o lelT 5]

OIMUNSTION An(4A Ma)gRR(0l2en)

COMPARE INITIAL O93INTS OF FLIGHT ANO INTERPULATION PROFILES

JINK 2 (KQ[1)=1)3KKS (L) =22MMyEVyY
IF lfu[) 82296224823

SV4 = vm

33 T3 K24

SV¥ = 0,

SuM = Yyvi(Muy/2)

P

LA

AV

e e e e b




[aNaNg)

616

607

600
603

604

606

639
6C5

608

602
609

610
501

625

618

629

BLO = C(ICKE)=-SvM

BLAT = B(ICKE)

BL = 3LO-SUMSVVM/(CCOS(BLAT)I=-SyM/2,

KM = KK(ICKE)

D0 616 I=1yNJ =% CTE
INIGI) = O ;
IM =1
SuUM =

SUMI =
3L0 =

KR

Sy~
IR

3L

NC

IM-1

U.
BLJI+SVM
NNV
= KR .
1 :
sLeSVM
TRANSI(L)
CPP = C(NC)
CCO = (BL-CPP)FOCCSIBLAT/VVM 3
IF (COD) 6005601502

IF (CDD*e5) £03,601,601

NC = CDD-.5

KRR = Xr+NC

IF (KRR) 604,604,605

IC = ICKE-NN

WRITE (64605) ICeIMyIMM

FORMAT (//2A¢*INTERFILATION PRIFILE NQ%yIss? OSOINT NG'ysIby!?

1SEQUENTLIAL ND'91&y /2%y 'HAS ~NOT BEEN CUMPUTED HBECAUSE 3 YEASUREM
2ENTS ARE AVAILABLE'y/) 5
RRIIMMy1) = 3.0 =
RRIIMY92) = 999999999,

RR(INM493) = O.

IM = IMel

[MY = [MMel

IF (IM=-KM) 607+607+530

GO T2 615

SuM =
€CDO = XR

CM = 100e=-Suu=
RRIIMMs3) = Cw
SUYS = KReNT
IR = IR-NC

IC = ICKE=-NN
WRITE (6+508) TCoI%eIM4,CN

FOIMAT (//2Xs "INTEPOLATIOUN PROFILE NO®yldy* POINT M3*,
LSEQUENTIAL 0'y149/2Xy *HAS SEEN CUMPUTED wITH ONLY®e7F%a1
2ENT OF THE 4EASUREMENTS REQUIRED' /)

GO TO 5C1
IF (CDD-.5)
DO oly
CDD = (6L-CPP)=DCIS(BP(I))/VVM
NC = (DD*.S

INI(I} = NCuKKKP (D)

IF (I0D) 625462594626

nuuwnl

-G

10C./CDD

[a!
"

SERC

6019£01,4609
i=1eNJ

MEAN VALJES

CALL FIX (AA¢MA,SUMyJJ)

SUAL = SJUMIe5UY

IF (IWI(1)=JJKX) 61Tv013,4613
SUMs = IR
C0D = ¥R
1F (IR=KR)
CN =

620et219520
SUMS%100./C00




[aNalal

[a¥eaNaXal

621
617
612

617

525

627
628
631

632
615

763

701

49

RROIMMy3) = TN

IC = [CKE-NI

WRITE (695038) 1C,IM,IMM,CN
IM = KM

GO TN K19

IR = [Rel

D0 o612 I=1l,\NJ

INICID) = INI(I)+KR¥P(])

IF LIR=-XR) 62696254019
SUMIL = SJAL/SJMS

RRUIMM,i) = 2L0

RRIIMM42) = SUMI

IMM = [M“el

IM = [“e)

IF (IM=X™M) £)7+5CTe529
GO TO 615

POINT VALUES

CALL FIX (AA,4A,SUY¥,Jy)

.RREIMMq1Y = 3LD

RREIMMeg) = SUM

BLT = 3LJ+VM/UCOSI3LAT)
IMY = IMvel

IM = [“el

DO 627 I=1y\J

INICI) = [NIUL)ex<XX2(])
IF {IM=-aM) 625462940615
IF CINI(D) *aXaP (1) =J2KK) 52546319631
00 632 [=0"Mek™

RRIL92) = 393999995,
RETURN

END

SUBROUTINE FIX (AA9MA,SUMyJJ)

PERFNRMS ONE CPERATION OF THE PREDICTION MATRIX Aa
¥ n
- 2

FIELD 2o RESULT IS STORED N 5UM.

IMPLICIT REAL #5(A=440=-Y)4LAGICAL(L)

COMMON /TICK/ 2P(12)eCP(121909(12)+8(15)eCILE)eBILS)oFBIL8)FI(1
LoTRANS(12) 952051 4C 29 CO0eVVMeSMI 9292 (Se=ZU0) o XKP(12) ¢KK¥P(12) 41
2129 T3 o KSULo) 9 &0 ilE) o I0ULOg T o NN oMM NMyNivNg Tial (12) g NNV oMY o=V TL¥,y

INJo MYV oMMV o ID1 01724 FI
JIYENSION Aa(4a,MA)

P =]
SUY = 0.
J =0
)13
JLL = )
ek = 3

KKKK = X<&PUIL)

KO = MVVaXKKK

ILE 2 JLL=SCeINICID)
JLL 2 JLE=KKXX

0O 730 IL = lgvay
ILE = [LLerO

JLL 2 JLL#XNKK

00 700 IZ=1y¥AKK




[aEsNaNaNoNaNaNaRal el

700

706
702
700

703
713
7192

701
711
704

705

J = JLLe+IZ
JJ 7 ILL+IZ

SUM = SUM+AA(T9J)FZ(I19dJ)
JLL = JLL#+KXKK

I1 = Il

IF (II-NJ) T01e701,702
SRUI) = Sum™

I = [l

IF (I-“v) 703,703,704

SUM = 0,

CO 70y I=1.MY

SUM = SUMeSRI(I)

SUMI = 4y

Su¥ = Sy4/suvi
RETURN

END

~SUBROUTINE COMPA (QRyKESUM,SUMS)

CETERMINES THE OIFFERENCES BETWEEN TRUE ANDY ESTIMATED VALJES OF THE
SIMULATED MUDELe TAz UM QF SQUARES AND ThE STANDARD DZVIATION ARE
STCREL IN SUM ARD Su™sS

RR ARRAY CONTAINING THE TKUE AND THE ESTIMATED VALUES
KE TOTAL NUMBeR OF ESTIMATED VALUES

172 TOTAL NUMBER OF TRUE VALUES

SuM SU% OF SQUARES JF OIFFcRENCES

SUMS VARIANCE OF OIFFERENCES

IMPLICIYT REAL =3(A-he0=Y),LUGICALI(L)

COVMON /TICK/ BP(12)elPU12)9DP(12)98016)4C{L18)sU(15)9F2LL51,FI(16)
LeTRAMS(L2) 93R(SH9CTeCONg VY Mg ST eRANGZ (594300 ) 4KKP L2 4¥AKPEL2i9]DP
20129 T) oK< 1a) o KKKELA) g ICT LoaT) oinil gMMeNMy NNNg TNT(12) g NNV NV MV 10K,
INJeMVV oMMy 3 [D 14 iTZyiFI

CIMENSION RRtollee)

SUM = Q.

KKKK = 0

IDD = 0

ILL =1

Jd =1

Jd = 1

NNNN = NNV
BLAT = 2(NNANY)

IF (CABSIBLAT=-RR(J94))~eJ1) TO1le701,4700
d = J+1

IF (J=IFI) 72247924723

IF (ILL) TlesT1ley713

WRITE (54713)

FCAMAT (///2€9'TRUF AND ESTIMATED VALUES 00 NOT “AVE COMPATIBLE CO
LORDINATES 9/ //)

GO TO 709

BLS = RR(JJy 1)

IF (DARSIALL=RR{J95))=eQ)) 70497040712
KKSN = KCONNNNS

KKXK = K<KKsLKXKN

DO 70% 1=JJyKKKK

II = J=-JJel

RR{Is0] = RU{IIyni

RREI¢5) = RR(I[I+5)

L = -1

B R T

o W




sEalalaEaNaRaNal

OO0 ON

wn
—

JJ = JJIeXKKN
Jd = JeKKLN
NNNN = NNKNe L
IF (NNNN=N1) 70647064707
TCT IF (ILL) TlaeyT714,4713
7l4 0CG 708 [=1+<KE
RR{Is&) = RRI(I9D)
RR({Is5) = Rx(Is&)
IF (RRALI¢2) =99999933%9.) 716e717,716
T15 SS = RRAMI921-n2(1y5)
SUM = SUM+SS=S35
RR{Is5) = S5
G3 TO 708
T17 IDD = [0Je+1
RRK(Ls0) = 5399995937,
RAR(I+3) = 0.
708 CCONTINUE
SS = K&-I0D

KE = SS
SUMS = DOSQRT (SUv/SS)
GU T2 739

T12 J = Je+l

IF (J=IFT) 7117114715
715 IF (ILL) 70997094713
703 RETURN

ENO

SUBROUTINE YULS (UsUUeVeVVySeS5SseI2)

COMPUTES A STATIONARY TIME SERIES USING YULE'S SCHEME

Uy JU COEFFICIENTS OF THE SERIES F3R THE Tw) PRECEDING SVENTS
VeVyV THE TWO PRECEDING EVENTS OF THE SERIES

S VARIANCE 3F THe SAUSSIAN PRICESS USEU TI SEMERAT:Z THE SEA!
) 7 RAOCY NUMEER 77 START SAUSSIAN PRICESS

SS TRANSFER OF COMPUTED EVENT

AH = O.

CALL JAUSS (IZ9S4A%eE)

SS = E-ufV=~UUSVY

Uuv = o

U = S5

RETURN

END

SUSRIOUTINE ZIvAx

A LISTING OF THIS SUUKCUTINE CAN 8E FOUNU % TSCRE<NING (1775)
QSU REPCRAT NI 22%¢ THE FILLLAWING CORRECTICNS sMuULD BE MADE
(PERSIMAL COMMUNICATIUN 9Y CeCeTICHERNING) ¢

PAGE S%oLINE 23 S¥RL112AL2¢(20 {540 (0a*D2RLLIZRALLITRLLIIFRNISANIERNISC L

PAGE 5J3+5TATEH4E!
PAGE 60 ¢STATEMENT 33 CrmaNGe SIGH

A ey
§Y 81 CRAVWIE 5161

THE PASE ~wJMBERS REFZR TJ TAE AbOVE REPURT

n
(%]

ke

Y

o



Appendix B:

SAMPLE I NPUT
97400000000 +97104000+01
K Al 49Eeb 10.
~17e 60 10. O.
~18. 40. 10. N.
=159« 50. 10. Ce
-20. 60 10. Q.
-2l 80 10. Oe
-22. 60. 10. Qe
-23. 6T 10. Ce
1 2 150
-17.5 60e5 Qe
-18.5 6045 Q.

Sample Computations

le

le

la

le

le

le

le.

60.

12

612
612

612

12

10

10

10

19

«a

(o]

(o]

(&)
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